skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mushtaq, Erum"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Federated learning (FL) is an efficient learning framework that assists distributed machine learning when data cannot be shared with a centralized server. Recent advancements in FL use predefined architecture-based learning for all clients. However, given that clients’ data are invisible to the server and data distributions are non-identical across clients, a predefined architecture discovered in a centralized setting may not be an optimal solution for all the clients in FL. Motivated by this challenge, we introduce SPIDER, an algorithmic frame- work that aims to Search PersonalIzed neural architecture for feDERated learning. SPIDER is designed based on two unique features: (1) alternately optimizing one architecture- homogeneous global model in a generic FL manner and architecture-heterogeneous local models that are connected to the global model by weight-sharing-based regularization, (2) achieving architecture-heterogeneous local models by a perturbation-based neural architecture search method. Experimental results demonstrate superior prediction performance compared with other state-of-the-art personalization methods. Code is available at https://github.com/ErumMushtaq/SPIDER.git. 
    more » « less